Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Double-Stranded-RNA-Binding Protein 2 Participates in Antiviral Defense.

Identifieur interne : 000173 ( Main/Exploration ); précédent : 000172; suivant : 000174

Double-Stranded-RNA-Binding Protein 2 Participates in Antiviral Defense.

Auteurs : Károly Fátyol [Oman] ; Katalin Anna Fekete [Hongrie] ; Márta Ludman [Hongrie]

Source :

RBID : pubmed:32213615

Descripteurs français

English descriptors

Abstract

Double-stranded RNA (dsRNA) is a common pattern formed during the replication of both RNA and DNA viruses. Perception of virus-derived dsRNAs by specialized receptor molecules leads to the activation of various antiviral measures. In plants, these defensive processes include the adaptive RNA interference (RNAi) pathway and innate pattern-triggered immune (PTI) responses. While details of the former process have been well established in recent years, the latter are still only partially understood at the molecular level. Nonetheless, emerging data suggest extensive cross talk between the different antiviral mechanisms. Here, we demonstrate that dsRNA-binding protein 2 (DRB2) of Nicotiana benthamiana plays a direct role in potato virus X (PVX)-elicited systemic necrosis. These results establish that DRB2, a known component of RNAi, is also involved in a virus-induced PTI response. In addition, our findings suggest that RNA-dependent polymerase 6 (RDR6)-dependent dsRNAs play an important role in the triggering of PVX-induced systemic necrosis. Based on our data, a model is formulated whereby competition between different DRB proteins for virus-derived dsRNAs helps establish the dominant antiviral pathways that are activated in response to virus infection.IMPORTANCE Plants employ multiple defense mechanisms to restrict viral infections, among which RNA interference is the best understood. The activation of innate immunity often leads to both local and systemic necrotic responses, which confine the virus to the infected cells and can also provide resistance to distal, noninfected parts of the organism. Systemic necrosis, which is regarded as a special form of the local hypersensitive response, results in necrosis of the apical stem region, usually causing the death of the plant. Here, we provide evidence that the dsRNA-binding protein 2 of Nicotiana benthamiana plays an important role in virus-induced systemic necrosis. Our findings are not only compatible with the recent hypothesis that DRB proteins act as viral invasion sensors but also extends it by proposing that DRBs play a critical role in establishing the dominant antiviral measures that are triggered during virus infection.

DOI: 10.1128/JVI.00017-20
PubMed: 32213615
PubMed Central: PMC7269452


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Double-Stranded-RNA-Binding Protein 2 Participates in Antiviral Defense.</title>
<author>
<name sortKey="Fatyol, Karoly" sort="Fatyol, Karoly" uniqKey="Fatyol K" first="Károly" last="Fátyol">Károly Fátyol</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő, Hungary kfatyol@gmail.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
<wicri:regionArea>Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő</wicri:regionArea>
<wicri:noRegion>Gödöllő</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fekete, Katalin Anna" sort="Fekete, Katalin Anna" uniqKey="Fekete K" first="Katalin Anna" last="Fekete">Katalin Anna Fekete</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő</wicri:regionArea>
<wicri:noRegion>Gödöllő</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ludman, Marta" sort="Ludman, Marta" uniqKey="Ludman M" first="Márta" last="Ludman">Márta Ludman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő</wicri:regionArea>
<wicri:noRegion>Gödöllő</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32213615</idno>
<idno type="pmid">32213615</idno>
<idno type="doi">10.1128/JVI.00017-20</idno>
<idno type="pmc">PMC7269452</idno>
<idno type="wicri:Area/Main/Corpus">000181</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000181</idno>
<idno type="wicri:Area/Main/Curation">000181</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000181</idno>
<idno type="wicri:Area/Main/Exploration">000181</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Double-Stranded-RNA-Binding Protein 2 Participates in Antiviral Defense.</title>
<author>
<name sortKey="Fatyol, Karoly" sort="Fatyol, Karoly" uniqKey="Fatyol K" first="Károly" last="Fátyol">Károly Fátyol</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő, Hungary kfatyol@gmail.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
<wicri:regionArea>Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő</wicri:regionArea>
<wicri:noRegion>Gödöllő</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fekete, Katalin Anna" sort="Fekete, Katalin Anna" uniqKey="Fekete K" first="Katalin Anna" last="Fekete">Katalin Anna Fekete</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő</wicri:regionArea>
<wicri:noRegion>Gödöllő</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ludman, Marta" sort="Ludman, Marta" uniqKey="Ludman M" first="Márta" last="Ludman">Márta Ludman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő</wicri:regionArea>
<wicri:noRegion>Gödöllő</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Diseases (virology)</term>
<term>Plant Immunity (MeSH)</term>
<term>Potexvirus (genetics)</term>
<term>Potexvirus (immunology)</term>
<term>RNA, Double-Stranded (immunology)</term>
<term>RNA, Viral (genetics)</term>
<term>RNA, Viral (immunology)</term>
<term>RNA-Binding Proteins (genetics)</term>
<term>RNA-Binding Proteins (immunology)</term>
<term>Tobacco (immunology)</term>
<term>Tobacco (virology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN double brin (immunologie)</term>
<term>ARN viral (génétique)</term>
<term>ARN viral (immunologie)</term>
<term>Immunité des plantes (MeSH)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (immunologie)</term>
<term>Maladies des plantes (virologie)</term>
<term>Potexvirus (génétique)</term>
<term>Potexvirus (immunologie)</term>
<term>Protéines de liaison à l'ARN (génétique)</term>
<term>Protéines de liaison à l'ARN (immunologie)</term>
<term>Tabac (immunologie)</term>
<term>Tabac (virologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Viral</term>
<term>RNA-Binding Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>RNA, Double-Stranded</term>
<term>RNA, Viral</term>
<term>RNA-Binding Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Diseases</term>
<term>Potexvirus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN viral</term>
<term>Maladies des plantes</term>
<term>Potexvirus</term>
<term>Protéines de liaison à l'ARN</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>ARN double brin</term>
<term>ARN viral</term>
<term>Maladies des plantes</term>
<term>Potexvirus</term>
<term>Protéines de liaison à l'ARN</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Plant Diseases</term>
<term>Potexvirus</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Plant Diseases</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Plant Immunity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Immunité des plantes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Double-stranded RNA (dsRNA) is a common pattern formed during the replication of both RNA and DNA viruses. Perception of virus-derived dsRNAs by specialized receptor molecules leads to the activation of various antiviral measures. In plants, these defensive processes include the adaptive RNA interference (RNAi) pathway and innate pattern-triggered immune (PTI) responses. While details of the former process have been well established in recent years, the latter are still only partially understood at the molecular level. Nonetheless, emerging data suggest extensive cross talk between the different antiviral mechanisms. Here, we demonstrate that dsRNA-binding protein 2 (DRB2) of
<i>Nicotiana benthamiana</i>
plays a direct role in potato virus X (PVX)-elicited systemic necrosis. These results establish that DRB2, a known component of RNAi, is also involved in a virus-induced PTI response. In addition, our findings suggest that RNA-dependent polymerase 6 (RDR6)-dependent dsRNAs play an important role in the triggering of PVX-induced systemic necrosis. Based on our data, a model is formulated whereby competition between different DRB proteins for virus-derived dsRNAs helps establish the dominant antiviral pathways that are activated in response to virus infection.
<b>IMPORTANCE</b>
Plants employ multiple defense mechanisms to restrict viral infections, among which RNA interference is the best understood. The activation of innate immunity often leads to both local and systemic necrotic responses, which confine the virus to the infected cells and can also provide resistance to distal, noninfected parts of the organism. Systemic necrosis, which is regarded as a special form of the local hypersensitive response, results in necrosis of the apical stem region, usually causing the death of the plant. Here, we provide evidence that the dsRNA-binding protein 2 of
<i>Nicotiana benthamiana</i>
plays an important role in virus-induced systemic necrosis. Our findings are not only compatible with the recent hypothesis that DRB proteins act as viral invasion sensors but also extends it by proposing that DRBs play a critical role in establishing the dominant antiviral measures that are triggered during virus infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32213615</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>94</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2020</Year>
<Month>05</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J Virol</ISOAbbreviation>
</Journal>
<ArticleTitle>Double-Stranded-RNA-Binding Protein 2 Participates in Antiviral Defense.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00017-20</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00017-20</ELocationID>
<Abstract>
<AbstractText>Double-stranded RNA (dsRNA) is a common pattern formed during the replication of both RNA and DNA viruses. Perception of virus-derived dsRNAs by specialized receptor molecules leads to the activation of various antiviral measures. In plants, these defensive processes include the adaptive RNA interference (RNAi) pathway and innate pattern-triggered immune (PTI) responses. While details of the former process have been well established in recent years, the latter are still only partially understood at the molecular level. Nonetheless, emerging data suggest extensive cross talk between the different antiviral mechanisms. Here, we demonstrate that dsRNA-binding protein 2 (DRB2) of
<i>Nicotiana benthamiana</i>
plays a direct role in potato virus X (PVX)-elicited systemic necrosis. These results establish that DRB2, a known component of RNAi, is also involved in a virus-induced PTI response. In addition, our findings suggest that RNA-dependent polymerase 6 (RDR6)-dependent dsRNAs play an important role in the triggering of PVX-induced systemic necrosis. Based on our data, a model is formulated whereby competition between different DRB proteins for virus-derived dsRNAs helps establish the dominant antiviral pathways that are activated in response to virus infection.
<b>IMPORTANCE</b>
Plants employ multiple defense mechanisms to restrict viral infections, among which RNA interference is the best understood. The activation of innate immunity often leads to both local and systemic necrotic responses, which confine the virus to the infected cells and can also provide resistance to distal, noninfected parts of the organism. Systemic necrosis, which is regarded as a special form of the local hypersensitive response, results in necrosis of the apical stem region, usually causing the death of the plant. Here, we provide evidence that the dsRNA-binding protein 2 of
<i>Nicotiana benthamiana</i>
plays an important role in virus-induced systemic necrosis. Our findings are not only compatible with the recent hypothesis that DRB proteins act as viral invasion sensors but also extends it by proposing that DRBs play a critical role in establishing the dominant antiviral measures that are triggered during virus infection.</AbstractText>
<CopyrightInformation>Copyright © 2020 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fátyol</LastName>
<ForeName>Károly</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő, Hungary kfatyol@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fekete</LastName>
<ForeName>Katalin Anna</ForeName>
<Initials>KA</Initials>
<AffiliationInfo>
<Affiliation>Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő, Hungary.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ludman</LastName>
<ForeName>Márta</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő, Hungary.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012330">RNA, Double-Stranded</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016601">RNA-Binding Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="Y">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057865" MajorTopicYN="Y">Plant Immunity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017863" MajorTopicYN="N">Potexvirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012330" MajorTopicYN="N">RNA, Double-Stranded</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016601" MajorTopicYN="N">RNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="Y">Tobacco</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">DRB2</Keyword>
<Keyword MajorTopicYN="Y">PAMP-triggered immunity</Keyword>
<Keyword MajorTopicYN="Y">RDR6</Keyword>
<Keyword MajorTopicYN="Y">antiviral RNA interference</Keyword>
<Keyword MajorTopicYN="Y">double-stranded RNA</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32213615</ArticleId>
<ArticleId IdType="pii">JVI.00017-20</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00017-20</ArticleId>
<ArticleId IdType="pmc">PMC7269452</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant Microbe Interact. 2017 Jun;30(6):435-443</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28296575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2019 Nov;537:143-148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31493652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Oct 1;7(10):1224-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22902697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Nov 02;9:1575</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30450108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2013 Jun;70(11):1949-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22960755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2011 Aug;17(8):1502-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21700726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2019 Jan;19(1):31-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30301972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Mar 10;9(3):e91776</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24614631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Jul 26;25(14):3347-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16810317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Nov;11(11):745-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24129510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Jan 10;206(1):583-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7831814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2011 Apr;17(4):750-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21270136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2014 Nov 20;41(5):868, 868.e1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25517618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2014;65:473-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24579988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2010 Sep;10(9):632-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20706278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e59534</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23555698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Jan;9(1):85-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Apr 21;7(1):1010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28432338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1991 Jun;182(2):486-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2024486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2015 Feb 09;1:14027</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27246880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Mar;23(3):283-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20121450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 May;25(5):1489-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23709626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2008 Aug 6;582(18):2753-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18625233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Jun;9(6):859-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9212462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2004 Jan 1;5(1):29-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1556-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21576511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15209-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Nov;22(11):1431-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19810812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Feb 18;44(3):1384-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26673719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Sep 1;39(17):7828-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21685453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2010 May 12;18(5):594-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20462493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2014 Dec 18;41(6):1066-1066.e1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25526315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Jan;57(2):173-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15821876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Mar 11;43(5):2802-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25680966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Aug;211(3):1008-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27030513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e35933</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22545148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Jun;27(6):1742-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26023161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2019 Apr 26;37:349-375</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30673536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Aug 21;45(14):8551-8563</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28575480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2019 Sep;20(9):1203-1210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30942534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1399-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Dec 21;7:2068</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28066385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2015 May;479-480:85-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25766638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Aug;138(4):1842-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16040651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 Feb;13(2):204-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21726401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jan 06;6:1201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26779232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Oct 29;42(19):12224-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25294831</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Hongrie</li>
<li>Oman</li>
</country>
</list>
<tree>
<country name="Oman">
<noRegion>
<name sortKey="Fatyol, Karoly" sort="Fatyol, Karoly" uniqKey="Fatyol K" first="Károly" last="Fátyol">Károly Fátyol</name>
</noRegion>
</country>
<country name="Hongrie">
<noRegion>
<name sortKey="Fekete, Katalin Anna" sort="Fekete, Katalin Anna" uniqKey="Fekete K" first="Katalin Anna" last="Fekete">Katalin Anna Fekete</name>
</noRegion>
<name sortKey="Ludman, Marta" sort="Ludman, Marta" uniqKey="Ludman M" first="Márta" last="Ludman">Márta Ludman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000173 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000173 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32213615
   |texte=   Double-Stranded-RNA-Binding Protein 2 Participates in Antiviral Defense.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32213615" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020